Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 501
Filtrar
1.
Chemosphere ; 354: 141634, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462189

RESUMO

The complexity of the subsurface contaminated by chlorinated solvents such as trichloroethylene (TCE) makes it challenging to gain a complete understanding of contamination distribution and establish a conceptual site model (CSM). High-resolution vertical contaminant concentration profiling across both the unsaturated zone and the saturated aquifer is desirable for mapping the distribution of contamination. A Fick's law-based polydimethylsiloxane (PDMS) dialysis passive sampler was developed and evaluated on a field scale for its potential application. This study tests the passive sampler at two TCE contaminated sites, and the sampling results were compared with the results from different sampling methods based on the relative percent difference. The PDMS dialysis passive sampler obtained more representative soil gas concentrations in the unsaturated zone than a portable monitoring and sampling device, which caused soil gas flow disturbance by soil gas pumping during sample collection. In the saturated aquifer sampling, the results obtained by the PDMS dialysis passive sampler correlated well with those obtained by a commercial polyethylene passive diffusion bag, and exhibited higher sensitivity under low TCE concentration conditions. Furthermore, the PDMS dialysis passive samplers were densely deployed inside each monitoring well at multiple depths, at two sites, to achieve high-resolution monitoring across the unsaturated zone and saturated aquifer. Based on the PDMS dialysis sampler data, a more comprehensive three-dimensional CSM was systematically established.


Assuntos
Tricloroetileno , Poluentes Químicos da Água , Solventes/análise , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Diálise Renal , Tricloroetileno/análise , Dimetilpolisiloxanos , Solo
2.
Mov Disord ; 39(3): 606-613, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38389433

RESUMO

BACKGROUND: Environmental exposure to trichloroethylene (TCE), a carcinogenic dry-cleaning chemical, may be linked to Parkinson's disease (PD). OBJECTIVE: The objective of this study was to determine whether PD and cancer were elevated among attorneys who worked near a contaminated site. METHODS: We surveyed and evaluated attorneys with possible exposure and assessed a comparison group. RESULTS: Seventy-nine of 82 attorneys (96.3%; mean [SD] age: 69.5 [11.4] years; 89.9% men) completed at least one phase of the study. For comparison, 75 lawyers (64.9 [10.2] years; 65.3% men) underwent clinical evaluations. Four (5.1%) of them who worked near the polluted site reported PD, more than expected based on age and sex (1.7%; P = 0.01) but not significantly higher than the comparison group (n = 1 [1.3%]; P = 0.37). Fifteen (19.0%), compared to four in the comparison group (5.3%; P = 0.049), had a TCE-related cancer. CONCLUSIONS: In a retrospective study, diagnoses of PD and TCE-related cancers appeared to be elevated among attorneys who worked next to a contaminated dry-cleaning site. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Neoplasias , Doença de Parkinson , Tricloroetileno , Masculino , Humanos , Idoso , Feminino , Doença de Parkinson/epidemiologia , Doença de Parkinson/etiologia , Doença de Parkinson/diagnóstico , Estudos Retrospectivos , Tricloroetileno/análise
3.
Environ Res ; 248: 118338, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38316390

RESUMO

The study investigated the influences of pure H2 and O2 introduction, simulating gases produced from the electrokinetic-enhanced bioremediation (EK-Bio), on TCE degradation, and the dynamic changes of the indigenous microbial communities. The dissolved hydrogen (DH) and oxygen (DO) concentrations ranged from 0.2 to 0.7 mg/L and 2.6 to 6.6 mg/L, respectively. The biological analysis was conducted by 16S rRNA sequencing and functional gene analyses. The results showed that the H2 introduction enhanced TCE degradation, causing a 90.4% TCE removal in the first 4 weeks, and 131.1 µM was reduced eventually. Accordingly, cis-dichloroethylene (cis-DCE) was produced as the only product. The following three ways should be responsible for this promoted TCE degradation. Firstly, the high DH rapidly reduced the oxidation-reduction potential (ORP) value to around -500 mV, beneficial to TCE microbial dechlorination. Secondly, the high DH significantly changed the community and promoted the enrichment of TCE anaerobic dechlorinators, such as Sulfuricurvum, Sulfurospirillum, Shewanella, Geobacter, and Desulfitobacterium, and increased the abundance of dechlorination gene pceA. Thirdly, the high DH promoted preferential TCE dechlorination and subsequent sulfate reduction. However, TCE bio-remediation did not occur in a high DO environment due to the reduced aerobic function or lack of functional bacteria or co-metabolic substrate. The competitive dissolved organic carbon (DOC) consumption and unfriendly microbe-microbe interactions also interpreted the non-degradation of TCE in the high DO environment. These results provided evidence for the mechanism of EK-Bio. Providing anaerobic obligate dechlorinators, and aerobic metabolic bacteria around the electrochemical cathodes and anodes, respectively, or co-metabolic substrates to the anode can be feasible methods to promote remediation of TCE-contaminated shallow aquifer under EK-Bio technology.


Assuntos
Tricloroetileno , Biodegradação Ambiental , Tricloroetileno/análise , Tricloroetileno/metabolismo , RNA Ribossômico 16S , Bactérias/metabolismo , Hidrogênio/análise , Hidrogênio/metabolismo , Oxigênio/análise , Oxigênio/metabolismo
4.
Zhonghua Yu Fang Yi Xue Za Zhi ; 57(11): 1756-1760, 2023 Nov 06.
Artigo em Chinês | MEDLINE | ID: mdl-38008560

RESUMO

There are clear indoor air pollution sources of trichloroethylene and tetrachloroethylene. A large number of epidemiological evidence has confirmed their carcinogenic toxicity and non-carcinogenic toxicity. Several countries and international organizations have paid attention to indoor air trichloroethylene and tetrachloroethylene. It has been also assessed that there should be certain potential health risk of indoor air trichloroethylene and tetrachloroethylene in China. Based on the latest research results of health risk assessment of indoor air trichloroethylene and tetrachloroethylene, the "Standards for indoor air quality (GB/T 18883-2022)" added trichloroethylene and tetrachloroethylene as indicators. The index limit of trichloroethylene is 6 µg/m3 for an 8-hour average concentration. The index limit of tetrachloroethylene is 120 µg/m3 for an 8-hour average concentration. The technical contents related to the determination of the standard limits of trichloroethylene and tetrachloroethylene in indoor air were analyzed and discussed, including the sources, the exposure, the health effects, the determination of the limit values, and the recommendations for standard implementation. It also proposed recommendations for the implementation of"Standards for indoor air quality (GB/T 18883-2022)".


Assuntos
Poluição do Ar em Ambientes Fechados , Tetracloroetileno , Tricloroetileno , Humanos , Tetracloroetileno/análise , Tricloroetileno/análise , China
5.
Environ Pollut ; 333: 122062, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37330185

RESUMO

Rapid growth and industrialization have become a major threat to water contamination with carcinogenic chlorinated hydrocarbons such as trichloroethylene (TCE). Therefore, this study aims to assess the TCE degradation performance through advanced oxidation process (AOP) using catalyst FeS2 in combination with oxidants persulfate (PS), peroxymonosulfate (PMS), and hydrogen peroxide (H2O2) in PS/FeS2, PMS/FeS2, and H2O2/FeS2 systems, respectively. TCE concentration was analyzed using gas chromatography (GC). The results found the trend for TCE degradation by the systems was PMS/FeS2>PS/FeS2>H2O2/FeS2 (99.84, 99.63, and 98.47%, respectively). Degradation of TCE was analyzed at different pH ranges (3-11) and maximum degradation at a wide pH range was observed for PMS/FeS2. The analysis using electron paramagnetic resonance (EPR) and scavenging tests explored responsible reactive oxygen species (ROS) for TCE degradation and found that HO• and SO4-• played the most effective role. The results of catalyst stability showed PMS/FeS2 system the most promising with the stability of 99, 96 and 50% for the first, second and third runs, respectively. The system was also found efficient in the presence of surfactants (TW-80, TX-100, and Brij-35) in ultra-pure water (89.41, 34.11, 96.61%, respectively), and actual groundwater (94.37, 33.72, and 73.48%, respectively), but at higher reagents dosages (5X for ultra-pure water and 10X actual ground water). Furthermore, it is demonstrated that the oxic systems have degradation capability for other TCE-like pollutants. In conclusion, due to its high stability, reactivity, and cost-effectiveness, PMS/FeS2 system could be a better choice for the treatment of TCE contaminated water and can be beneficial for field application.


Assuntos
Água Subterrânea , Tricloroetileno , Poluentes Químicos da Água , Peróxido de Hidrogênio/análise , Ferro/química , Tricloroetileno/análise , Água/análise , Oxirredução , Poluentes Químicos da Água/análise , Água Subterrânea/química
6.
Zhonghua Yu Fang Yi Xue Za Zhi ; 57(6): 835-838, 2023 Jun 06.
Artigo em Chinês | MEDLINE | ID: mdl-37357200

RESUMO

The usage of vinyl chloride and trichloroethylene in China has been increasing year by year, and they have been detected in both drinking water and environmental water, making them important environmental pollutants. Based on the latest research results on the health effects of vinyl chloride and trichloroethylene, the newly issued, "Standards for Drinking Water Quality (GB5749-2022)" in China has adjusted the standard limit of vinyl chloride from 0.005 mg/L to 0.001 mg/L and the standard limit of trichloroethylene from 0.07 mg/L to 0.02 mg/L. This article analyzed and discussed the relevant technical contents for determining the above standard limits, including the levels and exposure conditions of vinyl chloride and trichloroethylene in the water environment, health effects, derivation of safety reference values, and determination of hygiene standard limits. Suggestions were also made for the implementation of this standard.


Assuntos
Água Potável , Poluentes Ambientais , Tricloroetileno , Cloreto de Vinil , Poluentes Químicos da Água , Humanos , Cloreto de Vinil/análise , Tricloroetileno/análise , China , Poluentes Químicos da Água/análise
7.
J Parkinsons Dis ; 13(2): 203-218, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36938742

RESUMO

The etiologies of Parkinson's disease (PD) remain unclear. Some, such as certain genetic mutations and head trauma, are widely known or easily identified. However, these causes or risk factors do not account for the majority of cases. Other, less visible factors must be at play. Among these is a widely used industrial solvent and common environmental contaminant little recognized for its likely role in PD: trichloroethylene (TCE). TCE is a simple, six-atom molecule that can decaffeinate coffee, degrease metal parts, and dry clean clothes. The colorless chemical was first linked to parkinsonism in 1969. Since then, four case studies involving eight individuals have linked occupational exposure to TCE to PD. In addition, a small epidemiological study found that occupational or hobby exposure to the solvent was associated with a 500% increased risk of developing PD. In multiple animal studies, the chemical reproduces the pathological features of PD.Exposure is not confined to those who work with the chemical. TCE pollutes outdoor air, taints groundwater, and contaminates indoor air. The molecule, like radon, evaporates from underlying soil and groundwater and enters homes, workplaces, or schools, often undetected. Despite widespread contamination and increasing industrial, commercial, and military use, clinical investigations of TCE and PD have been limited. Here, through a literature review and seven illustrative cases, we postulate that this ubiquitous chemical is contributing to the global rise of PD and that TCE is one of its invisible and highly preventable causes. Further research is now necessary to examine this hypothesis.


Assuntos
Doença de Parkinson , Tricloroetileno , Animais , Tricloroetileno/toxicidade , Tricloroetileno/análise , Doença de Parkinson/epidemiologia , Doença de Parkinson/etiologia , Solventes/toxicidade , Fatores de Risco
8.
Artigo em Inglês | MEDLINE | ID: mdl-36981719

RESUMO

This study evaluated the use of a long-term capillary flow controller paired with an evacuated canister for indoor air exposure monitoring in a vapor intrusion (VI) environment with trichloroethylene in comparison to the traditional method utilizing a diaphragm flow controller. Traditionally, air sampling with 6 L evacuated canisters equipped with diaphragm flow controllers has been best suited for 8 to 24 h samples. New advances in capillary flow controllers can extend sampling to up to 3 weeks by reducing flow rates to 0.1 milliliters min-1. During six 2 wk sampling events, conventional diaphragm flow controller canisters were used to collect 24 h samples simultaneously with capillary flow controllers collecting 2 wk samples. Testing was performed at four indoor locations in buildings impacted by VI with co-located samples for each method at each location. All samples were analyzed using GC/MS, and the results were statistically analyzed to produce a direct comparison of the two sampling systems. Ninety-two percent of the 14 d capillary samples were within the 95% levels of agreement of the average concentration of the diaphragm flow controllers. The ability to collect 14 days of data, with less occupant disturbance, allows for improved exposure assessments and thus improved risk management decisions.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Tricloroetileno , Monitoramento Ambiental/métodos , Gases , Tricloroetileno/análise , Poluição do Ar em Ambientes Fechados/análise , Poluentes Atmosféricos/análise
9.
Environ Sci Technol ; 57(10): 4167-4179, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36866930

RESUMO

Fe0 is a powerful chemical reductant with applications for remediation of chlorinated solvents, including tetrachloroethene and trichloroethene. Its utilization efficiency at contaminated sites is limited because most of the electrons from Fe0 are channeled to the reduction of water to H2 rather than to the reduction of the contaminants. Coupling Fe0 with H2-utilizing organohalide-respiring bacteria (i.e., Dehalococcoides mccartyi) could enhance trichloroethene conversion to ethene while maximizing Fe0 utilization efficiency. Columns packed with aquifer materials have been used to assess the efficacy of a treatment combining in space and time Fe0 and aD. mccartyi-containing culture (bioaugmentation). To date, most column studies documented only partial conversion of the solvents to chlorinated byproducts, calling into question the feasibility of Fe0 to promote complete microbial reductive dechlorination. In this study, we decoupled the application of Fe0 in space and time from the addition of organic substrates andD. mccartyi-containing cultures. We used a column containing soil and Fe0 (at 15 g L-1 in porewater) and fed it with groundwater as a proxy for an upstream Fe0 injection zone dominated by abiotic reactions and biostimulated/bioaugmented soil columns (Bio-columns) as proxies for downstream microbiological zones. Results showed that Bio-columns receiving reduced groundwater from the Fe0-column supported microbial reductive dechlorination, yielding up to 98% trichloroethene conversion to ethene. The microbial community in the Bio-columns established with Fe0-reduced groundwater also sustained trichloroethene reduction to ethene (up to 100%) when challenged with aerobic groundwater. This study supports a conceptual model where decoupling the application of Fe0 and biostimulation/bioaugmentation in space and/or time could augment microbial trichloroethene reductive dechlorination, particularly under oxic conditions.


Assuntos
Chloroflexi , Tricloroetileno , Tricloroetileno/análise , Solo , Biodegradação Ambiental , Solventes
10.
Environ Sci Pollut Res Int ; 30(16): 48351-48362, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36757597

RESUMO

In this study, the degradation of trichloroethylene (TCE) with the existence of tween-80 (TW-80) or sodium dodecyl sulfate (SDS) using peroxymonosulfate (PMS) activated by nano-zero-valent iron (nZVI) was investigated. Over 87.6% TCE (with 1.3 g L-1 TW-80 presence) was degraded by 0.9 mM PMS and 0.12 g L-1 nZVI, while 89.7% TCE (with 2.3 g L-1 SDS presence) was degraded by 1.2 mM PMS and 0.20 g L-1 nZVI, in which more than 71.9% TCE with TW-80 existence and 87.5% TCE with SDS existence were dechlorinated. Besides, the effects of some factors (i.e., PMS and nZVI dosages, initial solution pH, and inorganic anions) on TCE removal were evaluated. The degradation of TCE was restrained continuously with increasing surfactant concentration, and TW-80 was more easily decomposed than SDS in PMS/nZVI system. Furthermore, sulfate radical (SO4-•) and hydroxyl radical (HO•) were demonstrated the main reactive oxygen species (ROS) contributing to TCE degradation and SO4-• played a dominant role through EPR tests and ROS scavenging experiments. Finally, the results of TCE degradation in actual groundwater confirmed that PMS/nZVI process has great advantages and potential in remediation of actual TCE-contaminated groundwater with TW-80 or SDS existence.


Assuntos
Água Subterrânea , Tricloroetileno , Poluentes Químicos da Água , Tensoativos , Ferro , Tricloroetileno/análise , Espécies Reativas de Oxigênio , Polissorbatos , Poluentes Químicos da Água/análise
11.
Chemosphere ; 323: 138059, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36806806

RESUMO

Many groundwater aquifers around the world are contaminated with trichloroethene (TCE), which can be harmful to human and ecosystem health. Permeable Reactive Barriers (PRB) are commonly used to remediate TCE-contaminated groundwaters especially when a point source is ill defined. Using biosolids from wastewater treatment plants as a PRB filling material can provide a source of carbon and nutrients for dechlorinating bacterial activity. However, under the anaerobic conditions of the PRB, methanogenesis can also occur which can adversely affect reductive dechlorination. We conducted bench scale experiments to evaluate the effect of biosolids on TCE reductive dechlorination and found that methanogenesis was significantly higher in the reactors amended with biosolids, but that reductive dechlorination did not decrease. Furthermore, the microbial communities in the biosolid-enhanced reactors were more abundant with obligate dechlorinators, such as Dehalobacter and Dehalogenimonas, than the reactors amended only with the dechlorinating culture. The biosolids enhanced the presence and abundance of methanogens and acetogens, which had a positive effect on maintaining an efficient dechlorinating microbial community and provided the necessary enzymes, cofactors, and electron donors. These results indicate that waste materials such as biosolids can be turned into a valuable resource for bioremediation of TCE and likely other contaminants.


Assuntos
Água Subterrânea , Microbiota , Tricloroetileno , Humanos , Biossólidos , Tricloroetileno/análise , Bactérias , Biodegradação Ambiental , Água Subterrânea/microbiologia
12.
Water Sci Technol ; 87(3): 761-782, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36789716

RESUMO

Chlorinated hydrocarbons (CHCs) are often used in industrial processes, and they have been found in groundwater with increasing frequency in recent years. Several typical CHCs, including trichloroethylene (TCE), 1,1,1-trichloroethane (TCA), carbon tetrachloride (CT), etc., have strong cytotoxicity and carcinogenicity, posing a serious threat to human health and ecological environment. Advanced persulfate (PS) oxidation technology based on nano zero-valent iron (nZVI) has become a research hotspot for CHCs degradation in recent years. However, nZVI is easily oxidized to form the surface passivation layer and prone to aggregation in practical application, which significantly reduces the activation efficiency of PS. In order to solve this problem, various nZVI modification solutions have been proposed. This review systematically summarizes four commonly used modification methods of nZVI, and the theoretical mechanisms of PS activated by primitive and modified nZVI. Besides, the influencing factors in the engineering application process are discussed. In addition, the controversial views on which of the two (SO4·- and ·OH) is dominant in the nZVI/PS system are summarized. Generally, SO4·- predominates in acidic conditions while ·OH prefers neutral and alkaline environments. Finally, challenges and prospects for practical application of CHCs removal by nZVI-based materials activating PS are also analyzed.


Assuntos
Água Subterrânea , Tricloroetileno , Poluentes Químicos da Água , Humanos , Ferro , Poluentes Químicos da Água/análise , Tricloroetileno/análise , Oxirredução
13.
Int J Occup Saf Ergon ; 29(1): 70-76, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34983310

RESUMO

Objectives. This study assessed the occupational health risks of work group exposure to trichloroethylene (TCE) in the electroplating and electronics industries in China. Methods. The UK Control of Substances Hazardous to Health (COSHH) Essential, the US Environmental Protection Agency (EPA) and the Singapore and the Chinese semiquantitative risk assessment models were used to assess the risks of TCE. Twenty degreasing groups and 14 cleaning groups were recruited in the companies selected. Results. The concentrations of TCE in 66.7% of the cleaning groups and 35.0% of the degreasing groups exceeded the permissible concentration time-weighted average (PC-TWA) in China, and the concentrations of TCE in 100.0% of the cleaning groups and 70.0% of the degreasing groups exceeded the permissible concentration short-term exposure limit (PC-STEL) in China. Over 60.0% of the work groups were evaluated at high risk and over half of the work groups were evaluated at high cancer risk by the risk assessment models. Conclusion. Most work groups exposed to TCE in the electroplating and electronics industries in China are at high risk. The cleaning groups may have a higher risk for TCE exposure. The Chinese exposure index method and the synthesis index method are more practical than the other methods.


Assuntos
Exposição Ocupacional , Tricloroetileno , Humanos , Tricloroetileno/análise , Exposição Ocupacional/análise , Galvanoplastia , Ocupações , Medição de Risco , Eletrônica
14.
Sci Total Environ ; 857(Pt 2): 159364, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36228794

RESUMO

The coupling of microscale zero-valent iron with autotrophic hydrogen bacteria (mZVI-AHB) are often believed to show greater potential than the single abiotic or biotic systems in remediating chlorinated aliphatic hydrocarbon-contaminated groundwater. However, our understanding of the remediation performance of this system under real field conditions, especially by incorporating the concept of sustainable remediation, remains limited. In this study, the performances of the mZVI, H2-AHB, and mZVI-AHB systems in dechlorinating groundwater containing complex electron acceptors were compared by evaluating their removal efficiency (RE), reaction products, and electron efficiency (EE), using trichloroethylene (TCE) as the target contaminant and NO3- and SO42- as the coexisting natural electron acceptors. Ultimately, which of these systems had TCE removal superiority was dependent on the coexisting electron acceptor. mZVI-AHB and mZVI resulted in more complete dechlorination, whereas H2-AHB exhibited higher N2 selectivity in reducing NO3-. Regardless of the coexisting electron acceptor, the mZVI-alone system showed the highest EE. Finally, the sustainability concerns and applicability of the three systems were evaluated on the basis of their TCE RE, complete dechlorination ratio, N2 selectivity, EE, and cost, which were integrated into a comparison of overall benefits. Our findings provide comprehensive and insightful information on the factors that determine remediation scheme selection in real practice.


Assuntos
Água Subterrânea , Tricloroetileno , Poluentes Químicos da Água , Hidrogênio , Ferro , Tricloroetileno/análise , Bactérias , Poluentes Químicos da Água/análise
15.
J Contam Hydrol ; 252: 104121, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36565588

RESUMO

Interest in using contaminant mass discharge (CMD) for risk assessment of contaminated sites has increased over the years, as it accounts for the contaminant mass that is moving and posing a risk to water resources and receptors. The most common investigation of CMD involves a transect of multilevel wells; however, this is an expensive undertaking, and it is difficult to place it in the right position in a plume. Additionally, infrastructure at the site needs to be considered. To derive an initial CMD estimate at a contaminated site and to allow for the prioritization of further investigations and remedial actions, the ProfileFlux method has been developed. It is targeted at former industrial sites with a source zone in a low conductivity layer with primarily vertical flow overlying an aquifer with primarily horizontal groundwater flow. The ProfileFlux method was developed for mature chlorinated solvent plumes, typically originating from more than 30 to 50-year-old spills, as the usage of chlorinated solvents is primarily historical. Thus, it is assumed that the contaminant had time to distribute in the low conductivity layer by mainly diffusive processes. Today the contamination is continuously released to the underlying aquifer, where advection and dispersive (other than diffusive) processes are of higher importance. The approach combines high-resolution, depth-discrete vertical concentration profiles and a simple 2D flow and transport model to estimate CMD by comparing measured and simulated concentration profiles. The study presented herein includes a global sensitivity analysis, in order to identify crucial field parameters, and of particular importance in this regard are source length, groundwater flux and infiltration. The ProfileFlux method was tested at a well-examined industrial site primarily contaminated with trichloroethylene, thereby allowing a comparison between CMD from the ProfileFlux method and the traditional transect method. CMD was estimated at 117-170 g/year, when using the ProfileFlux method, against 143 g/year with the transect method, thus validating ProfileFlux method's ability to estimate CMD. In addition, applying the method identified weak points in the conceptual site model. The method will be incorporated into a user-friendly online tool directed at environmental consultants and decision-makers working on the risk assessment and prioritization of contaminated sites with the specific hydrogeological conditions of an aquifer with an overlying low permeability layer.


Assuntos
Água Subterrânea , Tricloroetileno , Poluentes Químicos da Água , Argila , Poluentes Químicos da Água/análise , Tricloroetileno/análise , Solventes/química , Água Subterrânea/química
16.
Environ Sci Pollut Res Int ; 30(11): 31188-31201, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36445524

RESUMO

Chlorinated solvents are widespread subsurface contaminants that are often present as complex mixtures. Complete biodegradation of mixed chlorinated solvents remains challenging because the optimal redox conditions for biodegradation of different chlorinated solvents differ significantly. In this study, anaerobic and aerobic conditions were integrated by electrolysis coupled with groundwater circulation for biodegradation of a mixture of chloroform (CF, 8.25 mg/L), 1,2-dichloroethane (DCA, 7.01 mg/L), and trichloroethylene (TCE, 4.56 mg/L). A two-dimensional tank was filled with field sandy and silty-clayed sediments to simulate aquifer conditions, a pair of electrodes was installed between an injection well and abstraction well, and groundwater circulation transported cathodic H2 and anodic O2 to produce multiple redox conditions. Microbial community analysis demonstrated that the system constructed a habitat suitable for the co-existence of aerobic and anaerobic microbes. After 50 days of treatment, 93.1%, 100%, and 87.3% of CF, 1,2-DCA, and TCE were removed without observed intermediates, respectively. Combined with compound specific isotope analysis, the degradation of 1,2-DCA and CF was mainly attributed to aerobic oxidation and reductive dechlorination, respectively, and TCE was removed by both aerobic and anaerobic biodegradation. Our findings provide a new and efficient strategy for in situ bioremediation of groundwater contaminated by mixed chlorinated solvents.


Assuntos
Água Subterrânea , Tricloroetileno , Poluentes Químicos da Água , Biodegradação Ambiental , Poluentes Químicos da Água/análise , Anaerobiose , Tricloroetileno/análise , Solventes , Eletrólise
17.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-985483

RESUMO

The usage of vinyl chloride and trichloroethylene in China has been increasing year by year, and they have been detected in both drinking water and environmental water, making them important environmental pollutants. Based on the latest research results on the health effects of vinyl chloride and trichloroethylene, the newly issued, "Standards for Drinking Water Quality (GB5749-2022)" in China has adjusted the standard limit of vinyl chloride from 0.005 mg/L to 0.001 mg/L and the standard limit of trichloroethylene from 0.07 mg/L to 0.02 mg/L. This article analyzed and discussed the relevant technical contents for determining the above standard limits, including the levels and exposure conditions of vinyl chloride and trichloroethylene in the water environment, health effects, derivation of safety reference values, and determination of hygiene standard limits. Suggestions were also made for the implementation of this standard.


Assuntos
Humanos , Cloreto de Vinil/análise , Tricloroetileno/análise , Água Potável , Poluentes Ambientais , China , Poluentes Químicos da Água/análise
18.
Environ Mol Mutagen ; 63(8-9): 423-428, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36346153

RESUMO

Occupational exposure to trichloroethylene (TCE) has been associated with alterations in B-cell activation factors and an increased risk of non-Hodgkin's lymphoma (NHL). Here, we aimed to examine the biological processes influenced by TCE exposure to understand the underlying molecular mechanisms. This cross-sectional molecular epidemiology study included data of 1317 targeted proteins in the serum from 42 TCE exposed and 34 unexposed factory workers in Guangdong, China. We used multivariable linear regressions to identify proteins associated with TCE exposure and examined their exposure-response relationship across categories of TCE exposure (unexposed, low exposed: <10 ppm, high exposed: ≥10 ppm). We further examined pathway enrichment of TCE-related proteins to understand their biological response. Occupational exposure to TCE was associated with lower levels of tumor necrosis factor receptor superfamily member 17 (TNFRSF17; ß = -.08; p-value = .0003) and kynureninase (KYNU; ß = -.10, p-value = .002). These proteins also showed a significant exposure-response relation across the unexposed, low exposed, and high exposed workers (all p-trends < .001, false discovery rate [FDR] < 0.20). Pathway analysis of TCE-related proteins showed significant enrichment (FDR < 0.05) for several inflammatory and immune pathways. TCE exposure was associated with TNFRSF17, a key B-cell maturation antigen that mediates B-cell survival and KYNU, an enzyme that plays a role in T-cell mediated immune response. Given that altered immunity is an established risk factor for NHL, our findings support the biological plausibility of linking TCE exposure with NHL.


Assuntos
Linfoma não Hodgkin , Exposição Ocupacional , Tricloroetileno , Humanos , Tricloroetileno/toxicidade , Tricloroetileno/análise , Estudos Transversais , Proteômica , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Proteínas Sanguíneas , Linfoma não Hodgkin/induzido quimicamente , Linfoma não Hodgkin/epidemiologia
19.
J Contam Hydrol ; 250: 104075, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36115173

RESUMO

This study aims to precisely determine the effective diffusion coefficients of chlorohydrocarbons in low permeable units under in-situ field conditions. To this end, two controlled release field experiments using TCE and PCE as dense non-aqueous phase liquids (DNAPLs) were conducted in two natural clayey deposits. Several months to years after the controlled DNAPL release, highly resolved concentration profiles were determined for the chlorohydrocarbons that had diffused into the clayey deposits. Effective diffusion coefficients for TCE and PCE were then determined by calibrating a 3D numerical and 1D analytical model, respectively, to the measured high-resolution concentration profiles. The simulations revealed that the effective diffusion coefficients vary by as much as a factor of four within the same low permeability unit being consistent with observed small-scale heterogeneities. The determined chlorohydrocarbon effective diffusion coefficients were further used to determine the equivalent thickness of DNAPL that would completely dissolve in an idealized, parallel-plate fracture by diffusion transport into clayey deposits for the time periods of the controlled release field experiments. The equivalent TCE and PCE DNAPL film thicknesses ranged between 36 and 581 µm, respectively, comparable and exceeding fracture apertures measured in naturally fractured clay rich deposits. Hence, films of DNAPL initially contained within fractures in clay-rich deposits can completely dissolve away within a few months to a few years due to diffusion. This stored contaminant mass poses a risk to adjacent aquifers if it is re-released due to diffusion out of the matrix after source depletion or remediation.


Assuntos
Água Subterrânea , Hidrocarbonetos Clorados , Tricloroetileno , Poluentes Químicos da Água , Argila , Preparações de Ação Retardada , Tricloroetileno/análise , Poluentes Químicos da Água/análise
20.
Artigo em Inglês | MEDLINE | ID: mdl-35886652

RESUMO

By using compound-specific isotope analysis (CSIA) in combination with high-throughput sequencing analysis (HTS), we successfully evaluated the benzene and toluene biodegradation in a bio-permeable reactive barrier (bio-PRB) and the stress response of the microbial community. Under stress conditions, a greater decline in the biodegradation rate of BTEX was observed compared with the apparent removal rate. Both an increase in the influent concentration and the addition of trichloroethylene (TCE) inhibited benzene biodegradation, while toluene biodegradation was inhibited by TCE. Regarding the stress response, the relative abundance of the dominant bacterial community responsible for the biodegradation of BTEX increased with the influent concentration. However, the dominant bacterial community did not change, and its relative abundance was restored after the influent concentration decreased. On the contrary, the addition of TCE significantly changed the bacterial community, with Aminicenantes becoming the dominant phyla for co-metabolizing TCE and BTEX. Thus, TCE had a more significant influence on the bio-PRB than an increasing influent concentration, although these two stress conditions showed a similar degree of influence on the apparent removal rate of benzene and toluene. The present work not only provides a new method for accurately evaluating the biodegradation performance and microbial community in a bio-PRB, but also expands the application of compound-specific isotope analysis in the biological treatment of wastewater.


Assuntos
Tricloroetileno , Poluentes Químicos da Água , Benzeno/análise , Derivados de Benzeno/análise , Biodegradação Ambiental , Isótopos/análise , Tolueno/análise , Tricloroetileno/análise , Tricloroetileno/metabolismo , Poluentes Químicos da Água/análise , Xilenos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...